Multi-object tracking via tracklet confidence-aided relative motion analysis

نویسندگان

  • Han-Mu Park
  • Se-Hoon Park
  • Kuk-Jin Yoon
چکیده

Applications for tracking multiple objects in an image sequence are frequently challenged by various uncertainties, such as occlusion, misdetection, and abrupt camera motion. In practical environments, these uncertainties may occur simultaneously and with no pattern so that they must be jointly considered to achieve reliable tracking. We propose a two-step online multi-object tracking framework that incorporates a confidence-aided relative motion network (RMN) to jointly consider various difficulties. Because of the framework’s two-step data association process and the similarity function using RMNs, the proposed method achieves robust performance in the presence of most kinds of uncertainties. In our experiments, the proposed method exhibits a very robust and efficient performance compared with other state-of-the-art algorithms. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.5.050501]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Granularity Tracking: Mediating Trajectory and Detection Graphs for Tracking under Occlusions

We propose a tracking framework that mediates grouping cues from two levels of tracking granularities, detection tracklets and point trajectories, for segmenting objects in crowded scenes. Detection tracklets capture objects when they are mostly visible. They may be sparse in time, may miss partially occluded or deformed objects, or contain false positives. Point trajectories are dense in space...

متن کامل

Multi-camera Multi-Object Tracking

In this paper, we propose a pipeline for multi-target visual tracking under multi-camera system. For multi-camera system tracking problem, efficient data association across cameras, and at the same time, across frames becomes more important than single-camera system tracking. However, most of the multi-camera tracking algorithms emphasis on single camera across frame data association. Thus in o...

متن کامل

Tracklet clustering for robust multiple object tracking using distance dependent Chinese restaurant processes

To contrive an accurate and efficient strategy for object detection–object track assignment problem, we present a tracklet clustering approach using distance dependent Chinese restaurant processes (ddCRPs), which employ a two-level robust object tracker. The first level is an ordinary tracklet generator that obtains short yet reliable tracklets. In the second level, we cluster the tracklets ove...

متن کامل

Cross-Granularity Graph Inference for Semantic Video Object Segmentation

We address semantic video object segmentation via a novel cross-granularity hierarchical graphical model to integrate tracklet and object proposal reasoning with superpixel labeling. Tracklet characterizes varying spatial-temporal relations of video object which, however, quite often suffers from sporadic local outliers. In order to acquire highquality tracklets, we propose a transductive infer...

متن کامل

Multiple Object Tracking Using Local Motion Patterns

This paper presents an algorithm for multiple-object tracking without using object detection. We concentrate on creating long-term trajectories for unknown moving objects by using a model-free tracking algorithm. Each individual object is tracked by modeling the temporal relationship between sequentially occurring local motion patterns. The algorithm is based on shape and motion descriptors of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Electronic Imaging

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2017